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In this article, we study the problem of finding tight bounds on the expected
value of the kth-order statistic E @Xk :n# under first and second moment informa-
tion on n real-valued random variables+ Given means E @Xi # � µi and variances
Var @Xi # � si

2 , we show that the tight upper bound on the expected value of the
highest-order statistic E @Xn :n# can be computed with a bisection search algo-
rithm+ An extremal discrete distribution is identified that attains the bound, and
two closed-form bounds are proposed+ Under additional covariance information
Cov@Xi , Xj # � Qij , we show that the tight upper bound on the expected value of
the highest-order statistic can be computed with semidefinite optimization+ We
generalize these results to find bounds on the expected value of the kth-order
statistic under mean and variance information+ For k � n, this bound is shown to
be tight under identical means and variances+ All of our results are distribution-
free with no explicit assumption of independence made+ Particularly, using opti-
mization methods, we develop tractable approaches to compute bounds on the
expected value of order statistics+
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1. INTRODUCTION

Let X � ~X1, + + + , Xn! denote n � 2 jointly distributed real-valued random variables+
The order statistics of this set is a reordering of the Xi in terms of nondecreasing
values, expressed as X1 :n � {{{� Xk :n � {{{� Xn :n+ The lowest- and highest-order
statistics are denoted by X1 :n and Xn :n, respectively+ One of the central problems in
statistics is to find, bound, or approximate the expected value of order statistics
under varying assumptions on the distribution of the random variables+ For detailed
reviews on this subject, the reader is referred to @9# and @2# +

In this article, we focus on finding bounds on the expected value of order sta-
tistics under moment information on the random variables+ Let X ;u m denote the
set of feasible distributions u that satisfies the given moments m for the random
variables+

Definition 1: Zk :n
* is a tight upper bound on the expected value of the kth-order

statistic if

Zk :n
* � sup

X;um
Eu @Xk :n #;

that is, there exists a feasible distribution or a limit of a sequence of feasible dis-
tributions that achieves the upper bound.

No other assumptions on independence or the type of distribution are made+ In
this article, we develop methods to compute Zk :n

* under first and second moment
information on the random variables+ Next, we review some of the classical bounds
for order statistics+

1.1. Some Known Bounds

Given identical means and variances ~µ,s 2! for the random variables, one of the
earliest known bounds for the expected highest-order statistic was derived by Gum-
bel @10# and Hartley and David @11# + Under the assumption of independence, they
obtained the upper bound µ � s~n � 1!�M2n � 1+ Moriguti @18# extended this
result to the special case of symmetrically distributed random variables+

For more general distributions ~not necessarily independent or identically dis-
tributed!,Arnold and Groeneveld @3# obtained an upper bound on the expected value
of the kth-order statistic:

Eu @Xk :n # �

(
i�1

n

µi

n
� � k � 1

n~n � k � 1! (i�1

n �si
2 � �µi �

(
i�1

n

µi

n
�

2

� + (1)

Under identical means and variances, this bound reduces to

Eu @Xk :n # � µ � s� k � 1

n � k � 1
+ (2)
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For this particular case,Arnold and Groeneveld @3# showed that ~2! is tight by explic-
itly constructing a distribution that achieved the bound+However, for general mean–
variance information, ~1! is not necessarily tight+ Aven @4# proposed an alternative
upper bound on the expected value of the highest-order statistic:

Eu @Xn :n # � max
1�i�n

µi � �n � 1

n (i�1

n

si
2+ (3)

This bound is also not tight under general mean–variance information+ In this arti-
cle, we develop an algorithmic approach to find ~possibly! tight bounds on the
expected value of the order statistic Zk :n

* +We characterize cases for which the bound
can be computed tractably, or we propose simple closed-form bounds that seem
promising+

1.2. Contributions

Our main contributions in this article are as follows:

1+ In Section 2 we find the tight upper bound on the expected value of the
highest-order statistic Zn :n

* under mean–variance information on the random
variables+An efficiently solvable bisection search approach is developed to
compute Zn :n

* + A discrete extremal distribution is identified that attains the
tight bound+ Two simple closed-form bounds for the expected highest-order
statistic are proposed+ Under additional covariance information, we propose
a semidefinite programming approach to find the tight bound on the expected
highest-order statistic+

2+ In Section 3 we extend the bisection search method to obtain bounds on the
expected value of the general kth-order statistic under mean–variance infor-
mation+ For k � n, we show that the bound is tight under identical means
and variances+ For general mean–variance information, the bound found with
the bisection search method, although not necessarily tight, is at least as
strong as ~1!+

3+ In Section 4 we provide computational experiments to test the performance
of the different bounds+

2. BOUNDS ON EXPECTED HIGHEST-ORDER STATISTIC

We first compute the tight upper bound on the expected highest-order statistic Zn :n
*

under mean–variance information on the random variables+ The mean and variance
information on the random variables are denoted as m � ~µ1, + + + , µn! and s 2 �
~s1

2 , + + + ,sn
2!+ The set of feasible distributions satisfying these moment restrictions

is represented by X;u ~m,s 2!+ For simplicity of presentation, we will assume that
all of the si are strictly positive+ As discussed later, this condition can in fact be
relaxed+
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The approach to compute the tight upper bound on the expected value of the
highest-order statistic is based on a convex reformulation technique, initially pro-
posed by Meilijson and Nadas @17# and developed later in Bertsimas, Natarajan,
and Teo @5# + The reformulation is based on the observation that the highest-order
statistic Xn :n is a convex function in the Xi variables+ We review the key ideas of
this reformulation next+

Theorem 1 ~Bertsimas et al+ @5# !: The tight upper bound on the expected value of
the highest-order statistic Zn :n

* given X ;u ~m,s 2! is obtained by solving

Zn :n
* � min

z
�zn :n �(

i�1

n

sup
Xi;ui~µi ,si

2!

Eui @Xi � zi #
��, (4)

where x� � max~0, x! .

Sketch of Proof: We first show that ~4! provides an upper bound on Zn :n
* + To see

this, note that we have the following inequality for each variable Xi :

Xi � zi � ~Xi � zi !

� zn :n �(
i�1

n

@Xi � zi #
�+

Since the right-hand side of this inequality is independent of the particular i , we
have

Xn :n � zn :n �(
i�1

n

@Xi � zi #
�+

Taking expectations and minimizing over the zi variables, we obtain the best upper
bound:

Eu @Xn :n # � min
z
�zn :n �(

i�1

n

Eu @Xi � zi #
��+

Optimizing over distributions with given mean–variance information, we obtain an
upper bound:

Zn :n
* � min

z
�zn :n �(

i�1

n

sup
Xi;ui~µi ,si

2!

Eui @Xi � zi #
��+

Note that the inner problem is optimization over probability distributions of single
random variables ui , since no cross-moment information is specified+ For a proof
that the bound is tight, the reader is referred to @5# + Alternatively, we construct an
extremal distribution in Theorem 3 that attains the bound+ �
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The solution for the inner problem in ~4! is in fact known in closed form from
@13# and @22# +We now outline a simple proof for this bound+

Proposition 1: The tight upper bound on the expected value Eui @Xi � zi #
� given

Xi ;ui ~µi ,si
2! is

sup
Xi;ui~µi ,si

2!

Eui @Xi � zi #
� �

1

2
@µi � zi � M~µi � zi !

2 � si
2# + (5)

Proof: We have the basic equality

@Xi � zi #
� �

1

2
~Xi � zi � 6Xi � zi 6!+

Taking expectations, we obtain

Eui @Xi � zi #
� �

1

2
~Eui @Xi � zi #� Eui 6Xi � zi 6!, ∀Xi ;ui ~µi ,si

2!

�
1

2
~µi � zi � M~µi � zi !

2 � si
2!,

~from the Cauchy–Schwarz inequality!+

Furthermore, this bound can be shown to be tight since it is attained by the
distribution

Xi � 	 zi � M~µi � zi !
2 � si

2, w+p+ p �
1

2 �1 �
µi � zi

M~µi � zi !
2 � si

2
�

zi � M~µi � zi !
2 � si

2, w+p+ 1 � p �
1

2 �1 �
µi � zi

M~µi � zi !
2 � si

2
�+ �

Using this closed-form bound, we now show that the tight upper bound on the
expected highest-order statistic can be found by solving a univariate convex mini-
mization problem+

Theorem 2: The tight upper bound on the expected value of the highest-order sta-
tistic Zn :n

* given X ;u ~m,s 2! is obtained by solving the strictly convex univariate
minimization problem

Zn :n
* � min

z
fn :n~z!� min

z
�z �(

i�1

n 1

2
@µi � z � M~µi � z!2 � si

2#� (6)
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Proof: Combining Theorem 1 and Proposition 1, the tight upper bound on the
expected highest-order statistic is

Zn :n
* � min

z
�zn :n �(

i�1

n 1

2
@µi � zi � M~µi � zi !

2 � si
2#�+ (7)

We next show that ~7! can be simplified to a single-variable optimization problem+
Let z * be an optimal solution to ~7! and let zn :n

* denote the highest-order statistic+
Note that the second term,(i�1

n 1
2
_ @µi � zi �M~µi � zi !

2 � si
2# , is decreasing in zi +

Hence, for any i � n with zi :n
* � zn :n

* , by increasing zi :n
* up to zn :n

* the first term
remains unaffected while the second term decreases, thus reducing the objective+
Since we are minimizing the objective, the optimal solution will set all of the zi

*

values equal to zn :n
* + �

It can be easily checked that fn :n is a strictly convex function, implying that the
function has a unique global minimum+ The optimal decision variable z * in ~6! hence
satisfies the first-order condition obtained by setting the derivative ]fn :n~z!0]z to
zero:

]fn :n~z
* !

]z
� (

i�1

n � z * � µi

M~µi � z * !2 � si
2�� ~n � 2!� 0+ (8)

Remark: Our result can be viewed as an extension of the bound from Lai and Rob-
bins @15# and Ross @21# + In their case, under completely known marginal distribu-
tions Xi ;u ui , they obtain the following tight bound on the highest-order statistic:

sup
Xi;uui ,∀i

Eu @Xn :n # � min
z
�z �(

i�1

n

Eui @Xi � z#��+ (9)

Note that this result follows also from Meilijson and Nadas @17# +

2.1. An Extremal Probability Distribution

We construct an n-atom discrete distribution that satisfies that mean–variance require-
ments and attains the bound in ~6!+

Theorem 3: Let z * denote the optimal minimizer to (6). An n-atom extremal dis-
tribution for X that achieves the upper bound and satisfies the mean–variance
requirements is

X � 
X ~ j !, w.p. pj �
1

2 �1 �
µj � z *

M~µj � z * !2 � sj
2� for j � 1, + + + , n,
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where X ~ j ! � ~X1
~ j ! , + + + , Xn

~ j ! ! is expressed as

Xi
~ j ! � 
z * � M~µi � z * !2 � si

2 if i � j

z * � M~µi � z * !2 � si
2 if i � j+

Proof: From the definition, it is clear that the pj values denote a probability mea-
sure since pj � 0 for all j and

(
j�1

n

pj � (
j�1

n 1

2 �1 �
µj � z *

M~µj � z * !2 � si
2�

�
n

2
�

2 � n

2
~from ~8!!

� 1+

It can be verified for this n-atom distribution that

Eu @Xi # � (
j�1

n

pj Xi
~ j !� µi , i � 1, + + + , n,

Varu @Xi # � (
j�1

n

pj ~Xi
~ j !� µi !

2 � si
2 , i � 1, + + + , n+

Furthermore, the maximum among the n random variables for the j th atom is attained
by Xj

~ j !+ Thus,

Eu @Xn :n # � (
j�1

n

pj Xj
~ j !� �z * �(

j�1

n 1

2
@µj � z * � M~µj � z * !2 � sj

2#�� fn :n~z
* !+

This n-atom distribution attains the upper bound on the expected value of the highest-
order statistic and satisfies the mean and variance requirements+ This verifies that
the bound in Theorem 1 is tight+ �

2.2. Solution Techniques

In general, it does not seem possible to find Zn :n
* in closed form+ A special case

under which this is possible is discussed next+

2.2.1. Identical Mean and Variance For identical mean–variance pairs
~µ,s 2!, solving ~8! yields the optimal value for z * :

z * � µ � s
n � 2

2Mn � 1
+

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS 673



Substituting this into ~6! yields the tight bound

sup
Xi;u~µ,s

2 !∀i
Eu @Xn :n # � µ � sMn � 1+ (10)

Note that this is exactly ~2! obtained by Arnold and Groeneveld @3# for k � n+ A
distribution that attains this bound is randomly selecting n elements without replace-
ment from the set in which one element has the value µ �sMn � 1 and the remain-
ing n � 1 elements have the value µ � s�Mn � 1+

2.2.2. General Mean–Variance Pairs For the general case,we outline a sim-
ple bisection search algorithm to find Zn :n

* +

Description of the Algorithm

1+ Initialize zl and zu such that ]fn :n~zl !0]z � 0 and ]fn :n~zu!0]z � 0 and e� 0
to a given tolerance level+

2+ Let z � ~zl � zu!02+
3+ While 6]fn :n~z!0]z 6 � e, do:
~a! If ]fn :n~z!0]z � 0, set zu � z; or else set zl � z+
~b! Go back to Step 2+

4+ Output Zn :n
* � fn :n~z!+

We propose two simple upper and lower bounds zu and zl on the range of the opti-
mal z * to initialize the algorithm+ Consider the problem of finding a zu such that
f '~zu!� 0+ One such zu is constructed such that each term on the left-hand side of
~8! contributes at least a fraction ~n � 2!0n:

zu � µi

M~µi � zu !
2 � si

2
�

n � 2

n
, i � 1, + + + , n,

which reduces to

zu � µi � si

n � 2

2Mn � 1
, i � 1, + + + , n+

We choose zu as

zu � max
1�i�n

�µi � si

n � 2

2Mn � 1
�+ (11)

Similarly, a lower bound zl can be found such that

zl � µi

M~µi � zl !
2 � si

2
�

n � 2

n
, i � 1, + + + , n+
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A zl that satisfies this condition is

zl � min
1�i�n

�µi � si

n � 2

2Mn � 1
�+ (12)

Our computational tests indicate that these values of zu and zl lead quickly to the
tight bound+

2.2.3. New Closed-Form Bounds Based on the two end points, we now pro-
pose simple closed-form bounds on the expected value of the highest-order statistic+

Theorem 4: Two closed-form upper bounds on the expected value of the highest-
order statistic given X ;u ~m,s 2! are

1

2
�(

i�1

n �µi � ��µi � max
1�i�n


µi �
n � 2

2Mn � 1
si��2

� si
2

� ~2 � n!� max
1�i�n


µi �
n � 2

2Mn � 1
si��, (13)

1

2
�(

i�1

n �µi � ��µi � min
1�i�n


µi �
n � 2

2Mn � 1
si��2

� si
2

� ~2 � n!� min
1�i�n


µi �
n � 2

2Mn � 1
si��+ (14)

Proof: Substitute z � zl and z � zu in ~6! respectively+ �

Note that ~13! and ~14! reduce to the tight upper bound ~10! on the expected
highest-order statistic for random variables with identical mean–variance pairs+

2.3. Extensions

We now extend the results to the case where some of the si
2 � 0 ~i+e+, Xi is

deterministic!+ Without loss of generality, we assume that exactly one variable is
deterministic since the case with multiple constants can be reduced to this case by
choosing the maximum of the constants+ Given n � 1 random variables with strictly
positive variances and a constant K, we want to find the tight upper bound on
Eu @max~Xn :n,K !# + By introducing an extra decision variable, zn�1, for the term
K, ~4! reduces to

sup
X;u~m,s

2 !

Eu @max~Xn :n ,K !#

� min
z
�zn�1 :n�1 �(

i�1

n 1

2
@µi � zi � M~µi � zi !

2 � si
2#� ~K � zn�1!

��+

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS 675



Using an argument similar to Theorem 2, it can be checked that the optimal solution
will set all of the zi values the same at a value greater than or equal to K+ Hence, the
tight upper bound on the expected highest-order statistic is

sup
X;u~m,s

2 !

Eu @max~Xn :n ,K !# � min
z�K

�z �(
i�1

n 1

2
@µi � z � M~µi � z!2 � si

2#�,
(15)

which reduces to the constrained version of ~6!:

sup
X;u~m,s

2 !

Eu @max~Xn :n ,K !# � min
z�K

fn :n~z!+ (16)

The tight upper bound can be found by a modified bisection search method:

1+ Solve the unconstrained version of ~16! with bisection search to find z *+
2+ Output fn :n~max~z *,K !!+

We propose using the following two closed-form bounds in this case:

fn :n�max�max
1�i�n


µi �
n � 2

2Mn � 1
si� ,K� (17)

and

fn :n�max� min
1�i�n


µi �
n � 2

2Mn � 1
si� ,K� + (18)

2.4. Extensions to Additional Covariance Information

In this subsection,we propose an algorithmic approach to find the tight upper bound
on the expected value of the highest-order statistic under covariance information+
Given the mean and covariance matrix for the random variables X ;u ~m,Q!, the
tight upper bound is computed by finding a distribution u that solves

Zn :n
* � supu Eu @Xn :n #

s+t+ Eu @X # � m

Eu @XX ' # � Q �mm',

Eu @I�n # � 1+ (19)

Here I�n ~X ! � 1 if X � �n and zero otherwise represents the indicator function+
This problem has been well studied under the class of moment problems in Isii @12#
and Karlin and Studden @14# + To solve ~19!, we construct the dual problem by intro-
ducing variables y, Y, and y0 for each of the moment constraints+ The dual problem
is formulated as
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Z * � min~ y 'm� Y{~Q �mm' !� y0 !

s+t+ y 'X � X 'YX � y0 � Xn :n , ∀X � �n+ (20)

The constraints in ~20! imply the nonnegativity of a quadratic function over �n + By
taking the expectation of the dual constraints, it is easy to see that Z * � Zn :n

* + Fur-
thermore, Isii @12# showed that if the covariance matrix Q � 0 is strictly positive
definite, then Z * � Zn :n

* + Under this assumption, the convexity of Xn :n implies that
the tight upper bound on the expected highest-order statistic is

Zn :n
* � min~ y 'm� Y{~Q �mm' !� y0 !

s+t+ y 'X � X 'YX � y0 � Xi , i � 1, + + + , n, ∀X � �n+ (21)

Let e ~i ! denote a unit vector with the ith component ei
~i !�1 and zero otherwise+ The

equivalence between the global nonnegativity of a quadratic polynomial and the
semidefinite representation @20# implies that ~21! can be rewritten as

Zn :n
* � min~ y 'm� Y{~Q �mm' !� y0 !

s+t+ � Y ~ y � ei !02

~ y � ei !
'02 y0

� � 0, i � 1, + + + , n+ (22)

Here A � 0 denotes the constraint that the matrix A is positive semidefinite+ For-
mulation ~22! is a semidefinite optimization problem that can be solved within
e � 0 of the optimal solution in polynomial time in the problem data and log~10e!
@19# + In practice, standard semidefinite optimization codes such as SeDuMi @23#
can be used to find the tight upper bound on the expected highest-order statistic
under covariance information+

3. BOUNDS ON EXPECTED k TH-ORDER STATISTIC

In this section, we generalize our results to find bounds on the expected value of the
kth-order statistic for k � n under mean–variance information on the random vari-
ables; that is,

Zk :n
* � sup

X;u~m,s
2 !

Eu @Xk :n # +

Our results are based on the simple observation that

Xk :n �

(
i�k

n

Xi :n

n � k � 1
+ (23)

We find tight bounds on the expected value of the right-hand side of ~23! to obtain
bounds on the expected value of the kth-order statistic+
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Theorem 5: The tight upper bound on the expected value of the sum of the kth- to
nth-order statistic given X ;u ~m,s 2! is obtained by solving

sup
X;u~m,s

2 !

Eu�(
i�k

n

Xi :n � min
z
�~n � k � 1!z �(

i�1

n 1

2
@µi � z �M~µi � z!2 � si

2#�+
(24)

Proof: Using the result from Bertsimas et al+ @5# , the upper bound on the sum of
the expected value of the kth- to nth-order statistic is

sup
X;u~m,s

2 !

Eu�(
i�k

n

Xi :n � min
z
�(

i�k

n

zi :n �(
i�1

n 1

2
@µi � zi � M~µi � zi !

2 � si
2#�+

(25)

As earlier, ~25! can be reduced to a single-variable optimization problem+ To see
this, let z * be an optimal solution to ~25!+ For any l � k with zl :n

* � zk :n
* , we can

increase zl :n
* to zk :n

* since the first term is unaffected ~(i�k
n zi :n

* is unaffected by
change in zl :n

* , for l � k, provided zl :n
* � zk :n

* ! while the second term decreases in
zl :n
* + Hence, we have zl :n

* � zk :n
* for l � k+ Furthermore, for l � k with zl :n

* � zk :n
* , by

decreasing zl :n
* to zk :n

* the first term decreases at a rate of 1 while the second term
increases at a rate of at most 1+ Since we want to minimize our objective, we have
zl :n
* � zk :n

* for l � 1, + + + , n+ �

Using ~23! and Theorem 5, we now obtain a bound on the expected kth-order
statistic+

Theorem 6: An upper bound on the expected value of the kth-order statistic Zk :n
*

given X ;u ~m,s 2! is obtained by solving

Zk :n
* � min

z
fk :n~z!� min

z
�z �

1

2~n � k � 1! (i�1

n

@µi � z � M~µi � z!2 � si
2#�+

(26)

Note that the nonconvex structure of the kth-order statistic for k � n implies
that ~26! is not necessarily tight for general mean–variance pairs+ However, ~26! is
at least as tight as ~1! proposed by Arnold and Groeneveld @3# + This follows from
observing that they obtained their bound by bounding ~23!, although not in the tight-
est manner+ A special case under which ~26! is tight is described next+

3.1. Identical Mean and Variance For identical mean–variance pairs ~µ,s2!,
~26! yields the optimal value for z * :

z * � µ � s
2k � n � 2

2M~k � 1!~n � k � 1!
+
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Substituting this into ~26! yields

sup
Xi;u~µ,s

2 !,∀i
Eu @Xk :n # � µ � s� k � 1

n � k � 1
+ (27)

This is exactly ~2! obtained by Arnold and Groeneveld @3# + To see that ~27! is
tight, consider a distribution obtained by randomly selecting n elements without
replacement from the set in which n � k � 1 elements have the value µ �
sM~k � 1!0~n � k � 1! and the remaining k � 1 elements have the value µ �
sM~n � k � 1!0~k � 1!+ It is easy to verify that this distribution attains the bound
as described earlier+

3.2. General Mean-Variance Pairs For the general case, we propose the use
of the bisection search algorithm to find the bound on the expected kth-order sta-
tistic by solving minz fk :n~z!+ The lower and upper bounds on the range of the opti-
mal z * to initialize the bisection search method in this case reduces to

zu � max
1�i�n

�µi � si

2k � n � 2

2M~k � 1!~n � k � 1!
� (28)

and

zl � min
1�i�n

�µi � si

2k � n � 2

2M~k � 1!~n � k � 1!
�+ (29)

Theorem 7: Two closed form upper bounds on the expected value of the kth-order
statistic given X ;u ~m,s 2! are

Zk :n
* � fk :n�max

1�i�n
�µi � si

2k � n � 2

2M~k � 1!~n � k � 1!
��, (30)

Zk :n
* � fk :n� min

1�i�n
�µi � si

2k � n � 2

2M~k � 1!~n � k � 1!
��+ (31)

4. COMPUTATIONAL RESULTS

In this section, we evaluate the quality of the various bounds proposed in this arti-
cle+ The first example is an application of the highest-order statistic bound in a
financial context+ The second example is a simulation experiment to compare the
performance of the bounds for the general kth-order statistic+ The computations
were conducted on a Pentium II ~550 MHz!Windows 2000 platform with the total
computational time under a minute+

4.1. Application in Option Pricing

One of the central questions in financial economics is to find the price of a deriv-
ative security given information on the underlying assets+ Under a geometric Brown-

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS 679



ian motion assumption on the prices of the underlying assets and using the
no-arbitrage assumption, the Black–Scholes @7# formula provides an insightful
answer to this question+ Assuming no arbitrage, but without making specific dis-
tributional assumptions, Lo @16# , Bertsimas and Popescu @6#, and Boyle and Lin
@8# derived moment bounds on the prices of options+ Our particular focus is on
finding bounds on the price of an option known as the lookback option under
moment information on the asset prices+

Let x1, x2, + + + , xn denote the price of an asset at n different times+ A simple
lookback European call option on these assets with strike price K � 0 has a payoff
of max~Xn :n � K,0!+ Let r denote the risk-free interest rate and T denote the matu-
rity date+ Under the no-arbitrage assumption, the price of the lookback option is

P~K ! � e�rTEu @max~Xn :n � K,0!# , (32)

where the expectation is taken over the martingale measure+ Clearly, the price of
this option depends on the highest-order statistic+ Under mean and variance infor-
mation on Xi , Boyle and Lin @8# proposed the following upper bound on the price of
the lookback option:

P~K ! � e�rT (
i�1

n 1

2
@µi � K � M~µi � K !2 � si

2# + (33)

We use the results from Section 2 to find the best bounds on P~K !+Note that although
the asset prices are nonnegative in practice, we do not model this explicitly here to
compute our bounds+

The specific lookback option-pricing example is taken from Andreasen @1# +An
upper bound on the price of a European call lookback option over n �10 time steps
is calculated+ The risk-free interest rate ~r! is 5% and the time to maturity ~T ! is
1 year+ Table 1 provides the mean and variance information of the asset prices over
the 10 periods+

The bounds on the option price are computed for strike prices K from 70 to 140
in steps of 10+ Table 2 provides six bounds under mean–variance information and

Table 1. Mean–Variance Data on Asset Prices

Asset Price Xi Mean µi Variance si
2 Asset Price Xi Mean µi Variance si

2

1 100+50 40+48 6 103+05 257+92
2 101+00 81+94 7 103+56 304+55
3 101+51 124+4 8 104+08 352+26
4 102+02 167+87 9 104+60 401+08
5 102+53 212+37 10 105+13 451+03

Source: Andreasen @1# +
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Table 2. Upper Bound on Lookback Call Option Price

K

Bound 70 80 90 100 110 120 130 140

Tight mean–variance bound ~16! 75+38 65+87 56+35 46+84 37+33 27+81 19+58 14+82
Our closed-form bound ~17! 78+00 68+49 58+98 49+46 39+95 30+44 20+93 14+82
Our closed-form bound ~18! 85+49 75+97 66+46 56+95 45+71 28+14 19+58 14+82
Boyle and Lin’s bound ~33! 327+97 238+52 154+36 84+85 45+71 28+14 19+58 14+82
Arnold and Groeneveld’s bound ~1! 81+20 68+46 57+00 47+06 38+79 32+12 26+88 22+80
Aven’s bound ~3! 77+79 68+28 58+77 49+25 44+38 44+38 44+38 44+38
Tight mean–variance–covariance bound ~22! 73+23 63+73 54+25 44+79 35+40 26+41 19+30 14+75

Source: Andreasen @1# +

6
8
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an additional bound under covariance information+ For the last bound, we assumed
that the asset prices were uncorrelated and solved ~22! with the semidefinite opti-
mization code SeDuMi+ From Table 2, it is observed that Boyle and Lin’s bound is
very loose for small values of K+ On average, our proposed closed-form bound ~17!
outperforms both Arnold and Groeneveld’s @3# and Aven’s @4# bound, respectively+
Although the closed-form bound ~18! is weaker for smaller K, it is in fact tight for
larger K, indicating its usefulness+ In Figure 1, we provide the graphical compari-
son of the bounds ~excluding Boyle and Lin’s @8# bound, which is tight only for
large K !+

4.2. Simulation Test

The second example is a simulation test to compare the relative performance of
the different bounds under randomly generated moment information+We consider
n � 30 random variables+ The mean–variance pairs for each random variable were
independently chosen from a uniform distribution with µi ; U @0, 50# and si

2 ;
U @100, 400# + One hundred mean–variance pairs were sampled in these ranges and

Figure 1. Upper bound on lookback call option price+ From Andreasen @1# +
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the bounds on the expected order statistics were computed+ For each closed-form
bound, we evaluate the relative percentage error:

Percentage error � �Closed form bound � Bisection search bound

Bisection search bound
�� 100%+

For the highest-order statistic, the percentage error of the bounds are provided
in Figure 2 and Table 3+

Note that in this case, the bisection search method finds the tight bound Zn :n
* + In

this case, our closed-form bound ~13! performs the best and bound ~14! is relatively
weaker+

We next consider the results for a lower-order statistic+ Since the upper bound
for the lowest-order statistic Z1 :n

* from ~23! simply reduces to(i�1
n µi 0n, we use the

second lowest-order statistic Z2 :n
* to compare the bounds+ For this case, the bisec-

tion search method does not guarantee finding the tight bound+ The results obtained
are presented in Figure 3 and Table 4+ For this case, our closed-form bound ~14! is

Figure 2. Deviation of closed-form bounds from tight bound on expected highest-
order statistic+
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observed to be tightest among the closed-form bounds, with an average percentage
error of about 1%+

The simulation results seem to indicate that the two closed-form bounds
perform well in reasonable settings+ Interestingly, in each of the two simulations,
the best-closed form bounds were observed to be one of our bounds+ Although

Table 3. Statistics of Deviation of Closed-Form Bounds
for Expected Highest-Order Statistic

Bound Mean % Error Std+ Dev+ % Error

Our closed-form bound ~13! 7+73 1+96
Our closed-form bound ~14! 108+93 35+57
Arnold and Groeneveld’s bound ~1! 22+86 3+64
Aven’s bound ~3! 16+91 2+56

Figure 3. Deviation of closed-form bounds from bisection bound on second-
order statistic+
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cases can be constructed for which both of the bounds are weaker than either
Arnold and Groeneveld’s and Aven’s bounds, the results suggest that the bounds
are useful+

5. SUMMARY

In this article, we studied the problem of finding tight bounds on the expected value
of order statistics under first and second moment information on the random vari-
ables+ For the highest-order statistic, we showed that the tight upper bound could be
found efficiently under mean–variance information with a bisection search method
and under mean–variance–covariance information with semidefinite program-
ming+ For the general kth-order statistic,we provided efficiently computable bounds
~not necessarily tight! under mean–variance information+ Finding tight bounds for
the general kth-order statistic under mean–variance and possibly covariance infor-
mation is a potential research area for the future+
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